
Software Evolution - Clone Detection

CLource: Visualising the Evolution of
Code Clones

December 16, 2019

Students:
Lars van Hijfte
11291680

Rick Watertor
11250550

Lecturer:
Riemer van Rozen

Course:
Software Evolution

Contents

1 Introduction 2

2 Code Clone Detection 2
2.1 Detecting Clones . 2

2.1.1 Method Based . 3
2.1.2 Normalize Blocks . 4
2.1.3 Strip Identifiers . 4
2.1.4 Retrieve Statements . 4
2.1.5 Resolve Overlaps . 5
2.1.6 Statistics . 5

2.2 Threats to Validity . 6

3 Visualisation 6
3.1 Motivation . 6
3.2 Git Usage . 7
3.3 Report . 7
3.4 Gource . 7

3.4.1 Implementation notes . 8

4 Results 8

5 Conclusion 10

Page 1 of 11

Rapport
Software Evolution - Clone Detection

1 Introduction

When developing for large software systems, it can happen that a developer reuses the same
pieces of code by implementing it twice in the system. These similar pieces of code are
called code clones. Clones have a range of positive and negative effects: they can improve
evolvability, and its understandability [1]. It can also have negative effects, however: clones
evolve inconsistently, they are indicative of lower maintainability, and code tends to couple
around clones [2].

Depending on the definition and implementation of the detection, estimates are that, for
large systems, between 7% and 23% of the lines of code are clones [3].

To help remove these clones, there are already many visualisation tools made. Some
examples include: Bakers program [4], CCFinder [5], and CP-miner [6]. However, these
tools only show the current state of a software system.

We introduce our tool, called CLource, to not only visualise the current state, but also
the history of a software system. This creates a better understanding of when, how and by
whom clones were created. Furthermore, it may help in creating a better understanding of
how clones develop during the evolution of a software system.

2 Code Clone Detection

Clone detection has been done a lot in many different ways. However, there arose four broad
types of when code is considered a clone. These are the following [7]:

• Type 1: Identical code fragments.

• Type 2: Token-based identical code fragments. Here identifiers and literals are re-
moved.

• Type 3: Syntactically identical code fragments. Might have a slight change at state-
ment level.

• Type 4: Semantic similarity. Code will have the same result but might come to the
solution differently.

To detect these type of clones there are (for each one) also a lot of different approaches [8].
These can be grouped into text-based, token-based, tree-based, metrics-based, and graph-
based approaches. Our implementation uses the tree-based approach using an Abstract
Syntax Tree (AST). This enables the tool to easily modify parts of the code, which is used
for type 2 code detection. Furthermore, the AST inherently does not include any whitespace
and comments which should not be used in clone detection.

Our implementation can detect clone types 1 and 2. This section will describe how the
detection of the clones is done, and after that discuss the threats to validity with our tool.

2.1 Detecting Clones

Our implementation tries to find all code clones using the AST of a software system. An
overview of how this is done can be found in Figure 1. Extra explanation for each non-trivial
part is stated below.

First, the AST is transformed to the type of clones that should be detected, and option-
ally normalized blocks. After that, it uses the sliding window technique on all executables1

to group sections of identical code together, coupled with their source-code location. After
this is done, it has a list of all sections (i.e., slices of ’6’ executables long) and their respective
locations. When a section has multiple locations, it is considered duplicate code. However,

1Using the definition provided by Oracle: https://docs.oracle.com/javase/8/docs/api/index.html?

java/lang/reflect/Executable.html

Lars van Hijfte, Rick Watertor Page 2 of 11

https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/reflect/Executable.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/reflect/Executable.html

Rapport
Software Evolution - Clone Detection

if the clones are longer than the window used, it would register each new line as a different
code ’class’. For this reason, all overlapping sections are merged. Each step will be explained
in more detail in the following subsections.

1 // Get the whole codebase of a software system as abstract syntax tree

2 AST := getAST(softwareSystem)

3 // if user wants to ignore the blocks (these are by default normalized)

4 if (ignore_blocks) {

5 // add blocks to bodies of statements that do not yet have a block

6 AST := addBlocks(AST)

7 // remove blocks that are not direct bodies of other statements

8 AST := removeBlocks(AST)

9 }

10 if (type2) {

11 // strip prefix, types, and literals

12 AST := stripIdentifiers(AST)

13 }

14 map[Section, list[Location]] allSections := {}

15 if (methodBased) {

16 trees := allMethods(AST)

17 } else {

18 trees := allClasses(AST)

19 }

20 for (tree in trees){

21 // Get all statements in chronological order

22 statements := getStatements(tree)

23 // Go over all statements in a window of default 6

24 for (section in getSections(statements, 6)) {

25 if (section in allSections) {

26 // Add location as another location to section

27 allSections := updateSection(section, allSections)

28 } else {

29 // Add location to section

30 allSections := createSection(section, allSections)

31 }

32 }

33 }

34 // Get all sections that have multiple locations

35 clones := multipleLocations(allSections)

36

37 // If some sections overlap other sections, merge them together

38 clones := resolveOverlaps(clones)

Figure 1: Pseudocode of the implemented algorithm for duplicate code detection

2.1.1 Method Based

From Figure 1 it can be seen that our implementation can be both method based and class
based. By default, this is method based as clones inside a method are more likely to be actual
clones. Especially in Java, class based clone detection can generate a lot of clones unfairly.
Say two classes have three simple getters next to each other, especially in type 2, this would
always be considered a duplicate as it is a section of 6 consecutive lines of duplicate code
(ignoring the method names and field names). For this reason, our implementation only
looks at the bodies of methods. However, as this deviates from the definition, we also added
the possibility to turn this off and look at the full class. Both approaches are fully covered

Lars van Hijfte, Rick Watertor Page 3 of 11

Rapport
Software Evolution - Clone Detection

in our testing suite, and should therefore be correct.

2.1.2 Normalize Blocks

Although moving to the AST already removes a lot of code styling and normalizes most
of the layout, it does not normalize blocks. Because of this, the code shown in Figure 2
would not be considered clones. This could indeed be seen as not identical, however, our
implementation still provides the user to choose to also normalize these blocks. It does this
by first adding blocks to all bodies of statements that do not already have one, and then
removing blocks that do not add any functionality or have any semantic value.

1 // Without blocks

2 if (number == 0)

3 return number;

4 if (number == 1)

5 return number;

6 else

7 return fibonacci(number - 1) + fibonacci(number - 2);

8

9 // With blocks

10 if (number == 0) {

11 return number;

12 } if (number == 1) {

13 return number;

14 } else {

15 { // Excessive block

16 return fibonacci(number - 1) + fibonacci(number - 2);

17 }

18 }

Figure 2: Example of where normalizing blocks would influence the results

2.1.3 Strip Identifiers

As stated in the beginning of Section 2, Type 2 clone detection is defined as ”token-based
identical code fragments, with identfiers and literals removed”. This means that when we
comparing sections of code (our windows of 6 long), all identifiers and literals need to be
dismissed. Due to this, our implementation strips these before the search for clones. As
identifiers are stored as strings in the AST, it removes all strings. This also results in
all literal strings and numbers being set to an empty literal as those are also stored as
strings in the AST. Number prefixes (- and +, before a literal number) are removed, as
we consider these part of the literal number. Furthermore, all type names, method calls,
method declarations, class names, and other identifiers, are also removed, as we consider
these part of the identifiers.

2.1.4 Retrieve Statements

In order to use a sliding window technique, it needs to retrieve a list of all consecutive
statements in a method. It does this by traversing over all the statements in the AST
depth-first and adding each statement to a list.

To preserve the indentation level of each statement (to, for example, distinguish state-
ments within a for loop or outside a for loop), it also keeps track of the relative indentation
level compared to the next statement. All statements have by default an indentation level
of 0. If a statement is at the end of a block, the statement’s indentation level is decremented

Lars van Hijfte, Rick Watertor Page 4 of 11

Rapport
Software Evolution - Clone Detection

1 // code list representation (statement : indent level)

2 for(int i = 0; i < 5; i++) { // \for() : 1

3 System.out.println(i); // \expressionStatement() : 0

4 System.out.println(0); // \expressionStatement() : -1

5 }

Figure 3: Visual representation of the mapping of source code to our statement representa-
tion.

by one. For statements that have something in its body, it sets the indentation level to 1.
An example can be found in Figure 3.

Lastly, blocks and empty statements are not added to the list. In our opinion, these
should not be considered an individual statement. This is because they at function only as
structure statements, and do not add any instructions on the CPU level.

2.1.5 Resolve Overlaps

After all the clones with a length of the window size are found, it tries to resolve any overlap
between them. If a clone is longer than the window size, it would detect and mark every
window size long consecutive code within the clone as a clone. This is not user-friendly,
as this would mean that one line of code would be redundantly marked as a clone many
times (and consecutively show up in a visualization as multiple problems to be resolved).
To prevent this, we applied a resolution strategy to merge overlapping clones.

To understand our strategy, the input format of this strategy will need some discussion.
As input, the algorithm receives a list of lists of loc types in Rascal (these types map back
to the original source code location). This data type can be seen as a list of all ’duplication
classes’, with a list of locations that each describe where an instance of the clone class is
present.

First of all, the merging algorithm resolves self-overlap. Consider the scenario of a single
line repeated more than the window size. With our algorithm, two or more clones would be
found: from 0 to windowSize and from 1 to windowSize+1, and so on. The self-overlapping
resolution strategy checks if within a duplication class directly adjacent windows overlap,
and if so, merges them into one window. This results in one larger clone, containing the
duplicate lines. We perform this resolution strategy until fixed-point, to ensure no more
simplification steps can be taken.

If we can then find a loc object in a different duplication class that is directly adjacent
or overlapping with our current class, we can merge the two classes into one class. However,
this merging can only happen when there is overlap for all entries in a duplication class.
A clone can only be duplicated with a same-sized code (disregarding type 3 and 4), and
therefore the overlap should be present for all. Once it has found such a match, it combines
the original two duplication classes into one bigger duplication class.

After all original classes are checked, it repeats the merge algorithm until a fixed-point is
reached, indicating that no further merges are possible. After this, it has a list of all clones
with their respective locations, simplified to the most comprehensive clones possible (and
therefore clones longer than 6 lines can be found).

2.1.6 Statistics

Finally, to present some statistics and information about the clones, it determines the num-
ber of (raw) lines duplicated, percentage of duplicated lines, and the number of clone classes
found.

Lars van Hijfte, Rick Watertor Page 5 of 11

Rapport
Software Evolution - Clone Detection

To determine the number of raw lines duplicated, it takes all the locations of each clone,
finds their starting line and ending line, and creates a set of all pairs ”uri” and ”line”. This
combination results in a per-file unique set of duplicated lines, and if any other duplication
class includes the same lines in the same file, they are automatically filtered (due to the set
property). Therefore we reach an accurate count of raw lines that are duplicated. That is,
not stripped of comments, whitespace, or otherwise altered source code.

Alongside the duplication fragments, their source files and line numbers are embedded
in the output files that are used for the visualisation.

2.2 Threats to Validity

The first threat to validity our implementation contains, has to do with the final closing
bracket of the body of statements. If the code shown in Figure 4 would be a clone, this
implementation would not count the closing bracket as a line of that clone. This is because
the closing bracket is not considered as a statement on its own, and thus is not counted
(if it falls after the final statement). The impact of this should be minimal, as it does not
prevent duplications from being found. It does have an impact on the resulting number of
raw clone lines found, but this is at most one line per clone instance.

1 int i = 1;

2 if (i < 5)

3 i += 10;

4 int j = 10;

5 for (int k; k < 10; k += i) {

6 j += k;

7 }

Figure 4: Clone with a closing bracket at the end

The second thread comes with type 2 clones. The implementation for type 2 strips away
all strings. This is useful for stripping away all literals. However, we do not know when
Rascal uses strings to also represent other stuff. One example we found was that when
assigning, for example: i = 3, the sign is also stored as a string. This means that i = 3

would be considered the same as i += 3. This should not be the case. However, due to time
constraints, we could not detect all cases, and exclude those when stripping away strings.
From our relatively comprehensive testing suite, we only found this as part of one clone
instance. In real-life code this phenomenon may be more prevalent, but we do not have the
data to back this up, or to deny this.

3 Visualisation

The visualisation of CLourse is done in two steps. First, it creates a Git repository containing
all the clones, whereafter it uses Gource to visualise this repository. This section will explain
why this is done, and further describe what is visualised.

3.1 Motivation

Software systems can become very complex. Therefore, when there is a lot of code duplica-
tion in a project, simply emitting the number of clones (and other metrics) is not enough:
it is hard to find where and why code is duplicated. A programmer has to know how to
resolve these problems, and therefore should be equipped with the proper tools to battle the
issues in their code base.

Lars van Hijfte, Rick Watertor Page 6 of 11

Rapport
Software Evolution - Clone Detection

This is where the field of Software Visualization can help. The field of Software Vi-
sualization mainly concerns itself with displaying complex software systems, but the same
concepts can be applied to display complex software systems with metrics embedded into
them.

For example, Noack’s visual graph clustering model [9] can visually help the human
viewer infer properties about the system that is being visualized: such as finding well-
distributed nodes, and finding well-separated clusters.

Visualizations based on software history are further supported by the work of Gračanin
et al. [10], who discuss in a section the advances in version history visualization. They note
that manual inspection of metrics and changes on a software system are labor-intensive, and
that visualization can help here.

The field of visualization is also supported by non-scientifically developed tools, such as
such as Gource 2, which help visualize a software system over time, but its github reputation
shows that it is a well-known tool for vizualizing version control repositories.

3.2 Git Usage

To create a better insight into the history of a software system, CLource works with Git3.
This means that the visualisation only works for Git projects. However, as of writing 71%
of opensource projects found on OpenHub are written using Git 4. This, plus the growing
trend in Git usage, caused us to choose Git, as it seems to be the most widely adopted tool
for controlling versions in software systems. Additionally, additional launcher scripts can be
created to support different types of Version Control Software.

Our tool creates a complimentary Git repository with similar commits and the same
file-directory structure as the respective software system. Only the contents of each file is
different. For each commit in the history of the software system each file contains the clones
present at that commit together with the other files that the clone can be found in (i.e., each
clone instance has a reference to the other locations that share the same clone class). The
commit message is set to the respective commit id5 together with the statistics, as described
in Section 2.1.6, and the original message of the commit. The author of this ’fake commit’
is set to the same author as the original commit, to properly visualize the actors on the
repository in the visualization.

3.3 Report

During the search for clones per commit, the same statistics that are posted in the commit
message are also reported back to the user via the terminal. These statistics include: the
amount of duplicate code, number of clones, biggest clone, number of clone classes, and the
biggest clone class. Furthermore it shows three example clones which are not inserted into
the commit message itself. These example clones are randomly determined, by picking up
to three random indices in the clone pool and presenting them as plain text.

3.4 Gource

After the Git repository is created, all different types of Git tools can be used to analyse
the clones. Eazybi6, for example, can be used to view the changes over time. Or Git-stats7

can be used to see which contributors created the most amount of clones. We specifically

2https://github.com/acaudwell/Gource
3https://git-scm.com/
4https://www.openhub.net/repositories/compare
5In git, this is a commit hash.
6https://eazybi.com/integrations/git
7https://github.com/IonicaBizau/git-stats

Lars van Hijfte, Rick Watertor Page 7 of 11

https://github.com/acaudwell/Gource
https://git-scm.com/
https://www.openhub.net/repositories/compare
https://eazybi.com/integrations/git
https://github.com/IonicaBizau/git-stats

Rapport
Software Evolution - Clone Detection

looked into Gource8. This is a film based demonstration tool for visualising the history of
software systems [11]. It shows the file-directory structure changes over time.

This in itself would already give some indication on when which author made clones.
However, we extended on this by improving the colours used, and showing more information
per file, and allowing the user to view the statistics from the commit message. Lastly, we
added the possibility, for anyone running the tool, to open vim9 directly where the clones
are in the project. These modifications can be found at https://github.com/Larspolo/

Gource.

3.4.1 Implementation notes

Gource by itself uses the ’git log’ to speed up their program. It reads in all previous commits
and files by using the git log command, and from there it can display all files easily. We,
however, needed the content of the files, as that is where we wrote the information on the
sizes of the clones, the locations of the clones, the references to the other instances of a clone
class, and other meta-information.

Since Gource traverses a git history, we also needed to traverse the git history physically
in the file-structure. Everytime a file is clicked, the target file is ’checked-out’ in git, to show
the file at the time of the commit. Similarly, every time a file is hovered over, information
about that file is retrieved as part of the commit that is present at the time in Gource.
Finally, every time a change is made (as part of the commit), the difference in duplications
has to be determined. For this we load in the new file from the new commit, and read
its contents to determine the new duplication amount. We then update the file colour
accordingly. These actions can slightly impede on performance (and greatly increases startup
times), but the final tool is effective, and seems to perform well enough to be user-friendly.

4 Results

This section contains screenshots of CLource. For these screenshots CodeArena10 was used
as the project where the clone detection was run on.

8https://github.com/acaudwell/Gource
9https://www.vim.org/

10https://github.com/SimonBaars/CodeArena/

Lars van Hijfte, Rick Watertor Page 8 of 11

https://github.com/Larspolo/Gource
https://github.com/Larspolo/Gource
https://github.com/acaudwell/Gource
https://www.vim.org/
https://github.com/SimonBaars/CodeArena/

Rapport
Software Evolution - Clone Detection

Figure 5: Each node is a file. Edges are how the files are connected in the file structure.
Grey nodes (also files) do not include any clones, while red nodes do contain clones. The
brighter the red, the more clones it contains. Furthermore, on the left are the statistics.

Figure 6: When hovering over the files, it shows the filename together with the path and
the amount of duplicate lines.

Lars van Hijfte, Rick Watertor Page 9 of 11

Rapport
Software Evolution - Clone Detection

Figure 7: When clicking on a node, a terminal opens the first detected clone within that
file. It does this by opening vim with tabs for each of the files that the clone is found in.
Additional clone information is opened in a separate terminal tab.

5 Conclusion

CLource is a tool that can be used to visually indicate not only the current Type 1 and Type
2 clones that exist in a project, but can also give insightful information in the evolution of
said software system. It does this by both creating a Git repository where the history of all
the clones is tracked. On this git repository, various git visualization tools can be used. We
specifically adapted and modified Gource to visualise the repository in an interactive and
time-based manner.

Future research

Although this tool works and is able to visualise the evolution of clones within a software
system, there are also still some limitations. This tool currently works with only Type 1 and
2 clone detection. This does not limit the visualisation, but it could be useful to the end-user
to also detect type 3 clones within CLource. Furthermore, the tool can still be optimized.
Currently, a separate script is running for each commit individually, and therefore computes
the clones for the entire program every commit. This can be optimized by only using the
actual changes in the commit history. Lastly, we still noted some minor threats to validity
that need to be fixed to have an optimally working tool.

Lars van Hijfte, Rick Watertor Page 10 of 11

Rapport
Software Evolution - Clone Detection

References

[1] Cory J Kapser and Michael W Godfrey. ““Cloning considered harmful” considered
harmful: patterns of cloning in software”. In: Empirical Software Engineering 13.6
(2008), p. 645.

[2] Elmar Juergens et al. “Do code clones matter?” In: 2009 IEEE 31st International
Conference on Software Engineering. IEEE. 2009, pp. 485–495.

[3] Chanchal K Roy, James R Cordy, and Rainer Koschke. “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach”. In: Science of
computer programming 74.7 (2009), pp. 470–495.

[4] Brenda S Baker. “A program for identifying duplicated code”. In: Computing Science
and Statistics (1993), pp. 49–49.

[5] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. “CCFinder: a multilinguis-
tic token-based code clone detection system for large scale source code”. In: IEEE
Transactions on Software Engineering 28.7 (2002), pp. 654–670.

[6] Zhenmin Li et al. “CP-Miner: Finding copy-paste and related bugs in large-scale soft-
ware code”. In: IEEE Transactions on software Engineering 32.3 (2006), pp. 176–192.

[7] Vaibhav Saini et al. “Oreo: Detection of clones in the twilight zone”. In: Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM. 2018, pp. 354–365.

[8] Chanchal K Roy and James R Cordy. “Scenario-based comparison of clone detection
techniques”. In: 2008 16th IEEE International Conference on Program Comprehen-
sion. IEEE. 2008, pp. 153–162.

[9] Andreas Noack. “An energy model for visual graph clustering”. In: International sym-
posium on graph drawing. Springer. 2003, pp. 425–436.

[10] Denis Gračanin, Krešimir Matković, and Mohamed Eltoweissy. “Software visualiza-
tion”. In: Innovations in Systems and Software Engineering 1.2 (2005), pp. 221–230.

[11] Andrew H Caudwell. “Gource: visualizing software version control history”. In: Pro-
ceedings of the ACM international conference companion on Object oriented program-
ming systems languages and applications companion. ACM. 2010, pp. 73–74.

Lars van Hijfte, Rick Watertor Page 11 of 11

	Introduction
	Code Clone Detection
	Detecting Clones
	Method Based
	Normalize Blocks
	Strip Identifiers
	Retrieve Statements
	Resolve Overlaps
	Statistics

	Threats to Validity

	Visualisation
	Motivation
	Git Usage
	Report
	Gource
	Implementation notes

	Results
	Conclusion

