
Ad hoc networking on mobile devices: an experimental study on
synchronised audio playback

Jesse van den Ende
University of Amsterdam

11292954

Engel Hamer
University of Amsterdam

11256443

Lars van Hijfte
University of Amsterdam

11291680

Dennis Wind
University of Amsterdam

11299770

Abstract— With more and more handheld devices in use
nowadays, the potential of a mobile ad hoc network increases.
This paper aims to investigate the possibility of creating such
a network that relies on a ’bring your own infrastructure’
principle. In particular, we consider an implementation on
Android devices. We emphasise several limitations of the
platform. Finally, we propose a network structure using the
Google Nearby Connections API that succeeds at constructing
a network automatically, as well as sharing audio files among
connected devices. A downside of this is that no specific
connection medium can be chosen: Bluetooth or Wi-Fi Direct
will be chosen by the API itself in a best-effort manner,
depending on the connectivity.

I. INTRODUCTION

Modern day computer networks rely strongly on internet
service providers (ISPs) to facilitate a connection between
end users. They charge a fee for their services, which all
connected users have to pay. With the number of internet
users surpassing 4 billion in 2018 [11], the influential power
of these parties has become very large.

In this paper, we will investigate the possibility of creating
a mobile peer to peer network without the interposition of
any ISP. This will rely on a ’bring your own infrastructure’
principle: the users themselves are responsible for providing
connectivity. We will then experiment with this network for
a specific use case: sharing and synchronised playback of
audio files across multiple devices.

II. WIRELESS AD HOC NETWORKING

The network as outlined in the introduction is also known
as an ad hoc network or WANET (wireless ad hoc network).
The ad hoc property refers to the emergence of the network:
no pre-existing network infrastructure is necessary. All con-
nected devices (or: nodes) in the network can serve both as
an end user as well as a router. The routing algorithm in use
combined with the connectivity of the communicating parties
dynamically determines the forwarding of data packets.

Naturally, an ad hoc network requires a significant density
of its users in order to provide sufficient coverage. If the
distance between two nodes becomes too large, the con-
nection between them will break. In the case of insufficient
redundant connections, this could likely result in the network
becoming separated. Therefore it would be beneficial for
the reliability of the network to have many nodes, and
evenly distribute them around the coverage area. As the
density of nodes increases, ad hoc networks should become

increasingly reliable. However, this network might not have
any control over the positioning of nodes. This would violate
one of the main benefits of ad hoc networking, namely the
freedom for nodes to dynamically reposition themselves.
This information should be taken into consideration when
deciding on the platform used to implement the WANET on.

Personal computers for once would be expected to result in
a not very reliable network. They are often used only indoors
and turned off when they are not actively in use. Additionally,
many desktop computers are connected via ethernet and do
not have a wireless adapter. All in all, this would make it
difficult for a network to span across different towns or even
blocks since no intermittent nodes are present to forward
data packets across. Mobile devices, on the other hand,
are carried around everywhere by their users. Besides, they
are almost always on (operating in stand-by mode) which
allows for a more persistent connection. With more and
more smartphones in use nowadays (and over 1.42 billion
sales in 2018 [9]), the construction of a MANET (mobile ad
hoc network) becomes increasingly feasible. Whether it be
indoors or out on the street, it is highly likely that there is
some other device nearby to forward your data through.

In the following sections we will examine four different
methods for constructing an ad hoc network: via Bluetooth,
Wi-Fi Ad Hoc, Wi-Fi Aware and Wi-Fi Direct. For the sake
of feasibility, we will focus on the usage of a homogeneous
system, consisting only of mobile devices. In particular,
we will perform a case study on the most widely used
mobile platform of this moment: Android. According to its
manufacturer Google, the platform has over 2 billion daily
active users [7], and over 86.8% of handheld devices run
Android [9]. For this reason, we have chosen to investigate
the implementation of our ad hoc network on this operating
system. Additionally, the android developer documentation
is very extensive and contains chapters on both Bluetooth
and Wi-Fi [4][24].

III. BLUETOOTH

Bluetooth is a widely used standard for pairing devices
wirelessly, without the need for an internet connection.
Almost every handheld device is equipped with a Bluetooth
receiver nowadays, and therefore this standard has a lot of
potential for short-range ad hoc networking. The chances that
a device is compatible with the network are high.

1



A. Speed, power consumption and connection range

Most Bluetooth devices on the market are designed to
replace short cables. The typical power consumption of
such devices usually lies between 1mW and 10 mW [6].
Connections are maintained on a 2.4GHz frequency band,
which is also crowded with home appliances such as mi-
crowaves. Bluetooth, therefore, suffers from interference by
many sources. Combined with the low energy consumption
this imposes severe limitations on the connection speed.

The latest Bluetooth standards, from Bluetooth 3.0 on-
wards, promise theoretical data transfer rates of 24 Mbit/s
maximum [16]. The theoretical range of a Bluetooth con-
nection tops around 100 meters, but in practice file sharing
is only possible when communicating parties are within 5 to
10 meters distance from one another. Additionally, the closer
a receiver is to the Bluetooth transmitter, the higher the file
transfer rate will be.

Fig. 1. Bluetooth devices in a scatternet formation. [12]

B. Connection structure

In addition to the radio interface, Bluetooth also defines
a communication protocol. This includes peer discovery
as well as advertisement of services. All connections are
operated in a master-slave structure. Up to seven slaves
can be connected to a single master, creating a host-client
network also known as a piconet. A slave can be a part of
multiple piconets, thereby creating a scatternet as depicted
in Figure 1 [12]. This kind of network supports multihop
wireless traffic. A Bluetooth scatternet can be used as an ad
hoc network: there is no requirement for any pre-existing
infrastructure. On top of that, a connection between any two
nodes can be made through others. This is because nodes
can also forward data packets addressed to other nodes in
the network.

IV. WI-FI

Wi-Fi is a technology for wireless local area networking,
listed in the IEEE 802 family of protocols as IEEE 802.11. It
is widely used both in home as well as enterprise networks.

Like Bluetooth, every modern smartphone has a Wi-Fi trans-
mitter built-in. Unlike Bluetooth, Wi-Fi is used mostly in
the context of local area networking (LAN). Modern routers
often have a Wi-Fi access point (AP) built-in to facilitate a
wireless internet connection to their users.

A. Speed, power consumption and connection range

The current official standard for Wi-Fi is IEEE 802.11n
[10]. This version operates on two frequency bands: 2.4GHz
and 5GHz. The first of these is shared with Bluetooth and
many other devices. The latter on the other hand is only
available upon licensing, thereby suffering much less from
interference. Additionally, the 5GHz band offers a higher
data rate and usually has fewer devices using this frequency.
This does come at the cost of higher power consumption:
Wi-Fi’s typical output power ranges between 30mW to 100
mW [6].

According to the IEEE 802.11n specification, Wi-Fi should
provide theoretical data rates of at most 300Mbps on 2.4GHz
and even 900Mbps on 5GHz bands. However, in practice
speeds peak at 150Mbps and 450Mbps respectively [19].

B. Connection structure

There are three possible approaches to constructing an ad
hoc peer to peer network network via Wi-Fi. By using Wi-
Fi Ad Hoc, Wi-Fi Neighbor Awareness Networking or Wi-Fi
Direct [18]:

• Wi-Fi Ad Hoc [10], defined in IEEE 802.11, offers
an alternative to Wi-Fi’s standard infrastructure mode.
It allows for the creation of a network without a
preexisting infrastructure. This is achieved by making
each node responsible for both sending and retrieving
as well as forwarding data. Furthermore, the network
is passive. Because of this, participating devices do
not have to create a connection. Every device that is
advertising the same ID can be used as a node in the
network.

• Wi-Fi Neighbor Awareness Networking [20], or Wi-
Fi Aware for short, is a standard that uses a publish
and subscription model. Every participating device can
either publish to a service or subscribe to one. Publish-
ing to a service will send data to all devices that are
subscribed to it.

• Wi-Fi Direct [23], or Wi-Fi P2P, allows for the con-
struction of a peer to peer network by letting a device
itself act as an access point. Other devices can connect
to the network through a handshake protocol. This
only requires acceptation of a connection request via
a prompt. Alternatively, devices can connect to the
network as if it were any generic Wi-Fi access point.
This method is referred to as legacy mode [22].

V. CHOOSING A MEDIUM

When deciding on which type of medium should be used
for the network, we take into consideration the properties
of Bluetooth and Wi-Fi as outlined in the previous sections.

2



Connection speed, power consumption and connection range
are among the most important factors here:

• Depending on the bit rate of the encoding, audio files
can grow to significant size. An average mp3 file of 3
minutes long at 128kbps takes up 2.88MB. In order to
allow users to share and forward files of this size, the
connection speed should be sufficiently high.

• Since mobile devices have only relatively small batter-
ies, power consumption should be minimised.

• To provide a reliable connection the chances of discon-
necting from the network should be minimised. A large
connection range should result in increased reliability
here.

Bluetooth provides significantly lower data transfer rates
than Wi-Fi. The theoretical difference is by factor 35.
Additionally, the typical range for Bluetooth connections
is approximately ten times lower than for Wi-Fi [6]. This
does come at the cost of increased power usage. However,
increased power usage does not obstruct the functionality
of the application. The battery drain per byte sent is better
for Wi-Fi than for Bluetooth [13]. Furthermore the benefits
of Wi-Fi are much in favour of network reliability here.
Therefore Wi-Fi will be the medium of choice for the
implementation network.

Though it has been promised to be implemented ever since
2008, Wi-Fi Ad Hoc mode is not currently supported on
Android devices [17]. The functionality can only be accessed
by rooting the phone and changing the kernel [8]. This
operation voids the warranty of most devices. Furthermore,
it could result in permanent damage (or ’bricking’ of the
device). We have therefore decided not to proceed with this
method. Wi-Fi Aware is supported by Android, however
only from version 8.0 onwards [21]. As of this writing
only 21.5% of all devices meet this requirement [2]. Actual
compatibility shares are expected to be even lower, since
many manufacturers have not enabled this feature. For this
reason we will not take this into further consideration,
leaving Wi-Fi Direct as the only remaining mode for further
research.

VI. WI-FI DIRECT

Wi-Fi Direct uses a single-host, many-clients structure.
This means that every node can only be either a host or
a client, but not both. Additionally, a client is limited to
maintain only one connection to a single host. There can only
be one active link between any two nodes, and all network
traffic will go through the host node. This single point of
failure makes the network rather vulnerable: it completely
collapses once the host disconnects. In the rest of this section
we propose five different strategies to work around this
problem and construct an ad hoc network using Wi-Fi Direct.
Two of these use a standard Wi-Fi Direct connection. The
other three use the legacy connection mode.

A. Standard connection

1) Sequential connections: The first proposal is to se-
quentially establish a connection with all neighbouring nodes

a node can reach. After receiving a message through this
connection, the neighbouring node will disconnect itself and
forward the message to all its own neighbours using the same
method. This capitalises the quick reconnect functionality
between two previously paired nodes.

To discover the neighbours of a certain node in
the network, peer to peer discovery can be used
(WifiP2pManager.discoverPeers [26]). Once the
neighbours have been found, a node can proceed to connect
with another node using WifiP2pManager.connect
[26]. This strategy exposes a peculiar quirk of Wi-Fi Direct
as it involves disconnecting from a peer. According to its
documentation WifiP2pManager.cancelconnect
[26] should be used for disconnecting, but during
our experiments we noticed that the connection
persisted upon calling this method. Fortunately,
WifiP2pManager.removeGroup [26] disconnects
from the current group without removal, contrary to what
the documentation states.

The problem we found with this strategy is that the peer
list of a node is lost after disconnecting. This significantly
increases setup time, as finding peers took the most time
in this setup. Furthermore, this strategy also turned out to
be most unreliable: at times, no peers could be found. The
Oneplus 6 was particularly incapable of this, never having
found any peers at all. For these reasons, research into this
strategy was discontinued.

2) Forcing group ownership: This second proposal is an
alteration on the first. It forces the sender of a message to
become the group owner, by first creating a group using
WifiP2pManager.createGroup [26]. This creates a
group to which all neighbouring nodes can be connected.
The unreliable peer discovery as mentioned in the previous
subsection remains here, however discovery of neighbours
now only needs to take place once per session.

A major problem with this strategy is that every newly
created group displays a prompt on all receiving devices,
asking permission to connect to it. Ever since the Android
hidden API was blocked in 2018 [3], this prompt cannot be
automatically accepted anymore without rooting the device.
As a result, this strategy requires a user to manually accept
a request prompt before connecting to other nodes. This
prompt also needs to be answered before the connection
times out. Due to the fact that it requires too much user
interaction we cancelled further research into this strategy.

B. Legacy mode

Using legacy mode, we propose three more methods
that all work by creating a Wi-Fi Direct group
(WifiP2pManager.createGroup [26]). In order
to let legacy devices access this group, each node treats
such a group like a regular Wi-Fi access point with
an SSID and password. These credentials are randomly
generated. To communicate them to the other devices,
a Wi-Fi Direct local p2p service is created with as
instance name: ”SSID:password:ipAddress:port”.
This can be found by the other devices using

3



WifiP2pManager.discoverServices [26], after
which WifiManager.enableNetwork [25] is used to
connect to that access point.

3) Broadcasting for every message: In the third proposal
a node starts broadcasting once it wants to send a message.
When a different node detects its service they can connect
to the created access point. After establishing a connection
the node receives any data the broadcaster wants to share.

4) Permanent broadcasting: The fourth proposal works
by letting every node permanently broadcast their local p2p
service. If a node wants to start sending data, it first stops
broadcasting itself. After that the node sequentially connects
and disconnects to all other services it detects. Once other
nodes receive the data, they will forward it using this same
mechanism.

Both the third and fourth proposal stranded on
the very same problem. Like peer discovery, ser-
vice discovery exhibits rather inconsistent behaviour.
This is mostly noticeable when using devices from
different manufacturers. These all have to implement
the WifiP2pServiceRequest themselves, resulting in
slightly different protocols. The LG G4 for example can
only find one service per WifiP2pServiceRequest
[27], whereas the Oneplus One found multiple services per
WifiP2pServiceRequest [27]. The Samsung Galaxy
S6 stops service discovery once it has found a single service,
and will remain inactive until it is manually restarted. An-
other impediment found on the LG G4 is that restarting active
service discovery blocks it. We discontinued both proposals
because these inconsistencies highly obstruct development.

5) Static self-repairing network: In an effort to create a
workaround for the problems encountered in the previous
four proposals, we invented a fifth strategy. It minimises
the need for service discovery and works using a host-client
model. At first each device starts looking for a service. If
none is found after a given timeout a device will start its own
service. It then becomes the host node of the network and
starts broadcasting the service for others to discover. Once
a service is found a device immediately connects to it. This
creates a static network that can repair itself by restarting
the construction strategy.

This strategy does have a drawback: the maximum physi-
cal size of the network is bound by the maximum connection
range of the host. To bypass this limitation, a scatternet like
in the Bluetooth example from Figure 1 could be imple-
mented. This is theoretically possible since a node can be
both a Wi-Fi Direct group owner (access point) and a client
connected to an access point simultaneously. Nevertheless,
this structure is not officially supported and might therefore
be incompatible with some devices. Though the connections
are possible, each Wi-Fi Direct group owner gets the same
IP address when creating a group. As a result nodes would
not be able to connect to the socket of their parent in a
scatternet topology, since they share the same IP address. We
therefore abandoned this strategy for constructing a scatternet
as well. Since all of the proposed strategies were proven to be
unfeasible using the native WiFiP2pManager, a different

approach to solving the research problem is required.

VII. GOOGLE NEARBY CONNECTIONS API

The Google Nearby Connections API aims to offer peer
to peer networking functionality focused on seamless con-
nections [15]. Due to the fact that it is under development
by Google, it can use functionality of the device’s hardware
that normal developers cannot. This resolves many of the
problems described in the previous section. As an addition,
users are not prompted to turn on Bluetooth or Wi-Fi. These
features are automatically enabled as they are required, which
allows for making connections without any user interaction.
The API facilitates callbacks for advertising, discovery and
connections between compatible devices in an offline peer to
peer manner. The connections are established via different
mediums under the hood: using Bluetooth, Bluetooth low
energy and Wi-Fi Direct legacy mode. The choice of medium
is handled by the API itself, depending on both connectivity
and the topology of the network.

Fig. 2. P2P STAR (left) and P2P CLUSTER (right) topologies from
Google Nearby Connections API.

As for the network topology, Nearby Connections supports
two different strategies as depicted in Figure 2:

• P2P CLUSTER allows nodes to maintain M outgoing
and N incoming connections simultaneously, creating
a cluster-shaped topology. It can be used to create a
scatternet consisting of multiple clusters. This strategy
only uses Bluetooth.

• P2P STAR operates in a host-client manner. Every node
in the network can either be a host (maintaining N
incoming connections) or a client (maintaining a single
outgoing connection). This strategy does not allow
nodes to fulfil both roles at the same time. In contrast
to the previous strategy, it does sometimes make use of
Wi-Fi Direct. This is done based on the connectivity, in
a best-effort fashion.

In a previous section Wi-Fi was chosen in favour of Blue-
tooth, mainly for its data transfer rates. Therefore, the
P2P STAR topology best suits the needs of the application.

A. Establishing the connection

In order to initiate a connection, every device running the
application first starts advertising and discovering simulta-
neously. As soon as a device has established a connection
with another device, both of them will stop discovering.
Mostly because this is a rather costly process. Advertising on
the other hand is relatively low on resources, and therefore

4



remains active at all times. This allows any new devices to
connect to the network without any user interaction.

As soon as a device has lost its connection to the network,
the onDisconnected callback of the connection manager
is executed. This has been configured to re-enable peer dis-
covery, and thereby automatically re-establishes a connection
to the network like before. If the host loses the connection,
the network will collapse. However, since every node follows
the same procedure, negotiation on a new host will start
immediately. This allows the network to rebuild itself.

B. Decomposing Google Nearby Connections

When conducting research using an API an important
question to ask is what underlying standards are used.
As mentioned before, the Google Nearby Connections API
operates either on Bluetooth or Wi-Fi Direct. An interesting
follow up question is how Wi-Fi Direct is implemented
within the API in order to establish the network connection.

The fact that all but one device in a Nearby Connections
network are connected to a Wi-Fi Direct group via an access
point tells us that these connections are established using
Wi-Fi Direct legacy mode. Unlike in the experiments with
our proposed strategies using this mode, the random SSID
and password of the Nearby Connections group were shared
with other clients without creating a service. This means that
they are shared by some other method. This can only be in
one of two ways.

• Credentials could be shared via Bluetooth, since the
Nearby Connections API can use both Wi-Fi and Blue-
tooth. However, this method is unlikely since the choice
of the medium is made based on which provides the best
connectivity at the moment. It would be illogical to still
use Bluetooth after deciding to connect via Wi-Fi.

• The more likely option is that the SSID is found by the
WifiManager [25] and the password is set to a static
string. This could be done by the Android hidden API,
which the Google Nearby Connections API has access
to whereas regular developers do not.

VIII. IMPLEMENTATION EXPERIMENT

In order to perform an analysis on mobile ad hoc net-
working possibilities, we developed an application that in-
corporates an ad hoc network. The aim of this application
is sharing and simultaneous playback of audio files among
peers. This is done by maintaining one synchronised playlist
across the entire network, where the music files will be
played in the same order. Every device can add songs to
the playlist. Upon addition, an audio file will be forwarded
across the whole network using the data transfer protocol
defined below. Once a song is added to the shared playlist it
will go into the priority queue where it will get precedence
over previously played songs. After the first time played, it
will be moved to the repeat queue. From there all songs will
be repeated until the application is closed and every device
is disconnected from the network.

A. Exchanging data over the network

Once the network is constructed, every connected device
can share an mp3 audio file. Preceding every file stream
should be an application layer header containing metadata
used by the application. This header is sent separately from
the actual file, and contains the fields depicted in Table 1.

TABLE I
APPLICATION LAYER HEADER

Type Name Usage

long payloadId Identifier of upcoming file payload
String sender Sender device name
long timeStamp Moment of adding to queue
String fileSource Local file path
String title Song metadata
String artist Song metadata

The payload Id in the header is the value retrieved from
converting the audio file into a file Payload by the Nearby
Connections API. After this conversion, the file can be
transmitted to the peers in the network. Algorithm 1 below
illustrates this behaviour.

Algorithm 1 Queue synchronisation - Sender
1: procedure SEND(song) . Sends a song to all peers
2: generate payload from song
3: generate header from payload
4: send header to all peers
5: send payload to all peers
6: end procedure

It is important to note here that sending is handled by
the API using the underlying Bluetooth or Wi-Fi Direct
connection. Since the header and file itself are different types
of Payload objects, the order of sending is not guaranteed
[15]. Therefore, the receiver has to implement its own logic
for combining headers and files. This requires two global
mapped arrays, functioning like dictionaries:

• files mapping payload Ids to incomplete file pay-
loads.

• headers mapping payload Ids to headers.
As soon as the sender starts sending a payload, the

onPayloadReceived callback is triggered (denoted by
PR) [15]. For headers, all data is transmitted at once.
No updates follow. For files on the other hand, the
onPayloadTransferUpdate callback is triggered after
every chunk of data (denoted by PU) [15]. Algorithm 2
illustrates the behaviour of both callbacks.

B. Broadcasts

In order to share a file queue with every peer in the
network, messages are sent as broadcasts. As soon as the host
device receives both the header as well as the corresponding
file from one of its peers, it will then forward them to all
other devices except for the sender itself. This way, the
queues of all connected devices will be the same. Due to the

5



Algorithm 2 Queue synchronisation - Receiver
1: procedure PR(sender Id, payload) . Initial
2: if payload is a header then
3: add to headers with payloadId as key
4: if files contains payloadId key then
5: combine header data and audio file
6: add to queue, sorted by timeStamp
7: end if
8: end if
9: if payload is a file then

10: add to files with payloadId as key
11: end if
12: end procedure
13:
14: procedure PU(sender Id, payload) . Update
15: if payload completed successful then
16: if headers contains payloadId key then
17: combine header data and audio file
18: add to queue, sorted by timeStamp
19: end if
20: end if
21: end procedure

star topology of the network, no routing loops can emerge
by these broadcasts.

C. Time synchronisation

Once the network has been set up, the song which will be
played first can be chosen by any connected device. After
this device selects a song, it will start playing it straight
away, and simultaneously share it among the network. The
timestamp (in milliseconds) included in the song headers
is used for maintaining the the playlist sorted in increasing
order. Additionally, the first part of the song that was required
for the file transmission itself can be skipped by computing
the difference between the current time and the timestamp.

As the size of an ad hoc network increases, the time
required to spread a file across it also increases linearly. This
results in a delay which should be taken into account. After a
certain size the required transfer time will be higher than the
duration of the song itself. In such a case, the sending device
will already proceed with playing the next song, disturbing
the time synchronisation of the playlist. The application can
successfully maintain a shared playlist across the network,
but the exact ordering of it might shuffle for this reason.

IX. DISCUSSION

A. Conclusion

There are many available mediums for interconnecting
devices directly without the need for a networking infrastruc-
ture. Some of these can be used for ad hoc networking on the
Android operating system. Despite the fact that developers
cannot gain sufficient control over the Wi-Fi adapters, it is
still possible to construct an ad hoc network using Wi-Fi
Direct. We proposed an implementation of an ad hoc network
on mobile devices, using the Google Nearby Connections

API. The resulting application succeeds at constructing a net-
work automatically, as well as sharing files among connected
devices. A downside of this, is that no specific connection
medium can be chosen: Bluetooth or Wi-Fi Direct will be
chosen by the API itself in a best-effort manner, depending
on the connectivity.

B. Future work

As described in section VII, a device will automatically
reconnect to the network once the connection is lost. How-
ever, since there is no fallback mechanism in place, all
files transmitted during the downtime of a node cannot be
recovered. This causes queues of reconnected peers to get out
of sync. Future research on recovery of missed files could
improve the reliability of the application.

To avoid queue shuffling issues between connected devices
as described in the previous section, an alteration to the
file sharing system could be made. Currently, an entire file
is shared at once, requiring all devices to delay playing
it until it has been fully received. Changing the sharing
system into a stream, where the music is shared in smaller
chunks meant for immediate playback, could minimise these
synchronisation issues. This seems like a more user-friendly
experience, rather than waiting for the entire file transmission
before the music can start playing.

Additionally, minor clock differences between devices
cause the playback of audio files to get noticably out of
sync. If one desires more accurate simultaneous playback
across multiple devices, network clock synchronisation could
be implemented, using for example the Network Time Pro-
tocol (NTP) [5][14]. This ensures that all connected devices
maintain the same calibrated time, usually differing no more
than a few dozen milliseconds from the host.

As a replacement for the Google Nearby Connections API,
which sometimes uses Bluetooth rather than the faster Wi-
Fi Direct connection, the Wi-Fi Aware protocol could be
researched further. This could greatly improve the robustness
and flexibility of the network.

REFERENCES

[1] AdHoc-Monitor. URL: https://github.com/
ERLKDev/AdHoc-Monitor.

[2] Android distribution dashboard. URL: https :
/ / developer . android . com / about /
dashboards/.

[3] Android Hidden API. URL: https://developer.
android . com / about / versions / pie /
restrictions-non-sdk-interfaces.

[4] Bluetooth overview — Android Developers. URL:
https://developer.android.com/guide/
topics/connectivity/bluetooth.

[5] H. Cho et al. “Precision Time Synchronization Using
IEEE 1588 for Wireless Sensor Networks”. In: 2009
International Conference on Computational Science
and Engineering. Vol. 2. Aug. 2009, pp. 579–586.
DOI: 10.1109/CSE.2009.264.

6



[6] E. Ferro and F. Potorti. “Bluetooth and Wi-Fi wireless
protocols: a survey and a comparison”. In: IEEE
Wireless Communications 12.1 (Feb. 2005), pp. 12–26.
ISSN: 1536-1284. DOI: 10 . 1109 / MWC . 2005 .
1404569.

[7] Google. Thanks to developers and our partners
around the world, there are now more than 2 billion
monthly active Android devices. io17. May 2017. URL:
https://twitter.com/Google/status/
864890655906070529.

[8] “http://thinktube.com/index.php/tech-en/android/wifi-
ibss”. In: ().

[9] IDC - Smartphone Market Share - OS. URL: https:
/ / www . idc . com / promo / smartphone -
market-share/os.

[10] “IEEE Standard for Information technology–
Local and metropolitan area networks– Specific
requirements– Part 11: Wireless LAN Medium
Access Control (MAC)and Physical Layer (PHY)
Specifications Amendment 5: Enhancements for
Higher Throughput”. In: IEEE Std 802.11n-
2009 (Amendment to IEEE Std 802.11-2007 as
amended by IEEE Std 802.11k-2008, IEEE Std
802.11r-2008, IEEE Std 802.11y-2008, and IEEE
Std 802.11w-2009) (Oct. 2009), pp. 1–565. DOI:
10.1109/IEEESTD.2009.5307322.

[11] Internet Usage Statistics 2018. URL: https : / /
www.internetworldstats.com/stats.htm.

[12] P. Johansson et al. “Bluetooth: an enabler for personal
area networking”. In: IEEE Network 15.5 (Sept. 2001),
pp. 28–37. ISSN: 0890-8044. DOI: 10.1109/65.
953231.

[13] G. Kalic, I. Bojic, and M. Kusek. “Energy consump-
tion in android phones when using wireless commu-
nication technologies”. In: 2012 Proceedings of the
35th International Convention MIPRO. May 2012,
pp. 754–759.

[14] H. Melvin and P. Corcoran. “Playback Synchroniza-
tion Techniques for Networked Home Appliances”. In:
2007 Digest of Technical Papers International Con-
ference on Consumer Electronics. Jan. 2007, pp. 1–2.
DOI: 10.1109/ICCE.2007.341436.

[15] Nearby Connections API. URL: https : / /
developers . google . com / nearby /
connections/overview.

[16] Bluetooth SIG. Bluetooth Core Specification.
URL: https : / / www . bluetooth . com /
specifications / bluetooth - core -
specification.

[17] Support Wi-Fi ad hoc networking. URL: https :
/ / issuetracker . google . com / issues /
36904180.

[18] Thali project. URL: http : / / thaliproject .
org/AndroidP2P/.

[19] Which frequency should you use, 2.4Ghz or 5Ghz?
URL: https : / / www . centurylink . com /

home/help/internet/wireless/which-
frequency-should-you-use.html.

[20] Wi-Fi Aware. URL: https://www.wi-fi.org/
discover-wi-fi/wi-fi-aware.

[21] Wi-Fi Aware Android documentation. URL: https:
/ / developer . android . com / guide /
topics/connectivity/wifi-aware.

[22] Wi-Fi Direct, documentation. URL: https : / /
developer . android . com / training /
connect - devices - wirelessly / Wi - Fi -
direct.

[23] Wi-Fi gets personal: Groundbreaking Wi-Fi Direct
launches today. URL: https://www.wi- fi.
org / news - events / newsroom / wi - fi -
gets-personal-groundbreaking-wi-fi-
direct-launches-today.

[24] Wi-Fi peer-to-peer overview — Android Developers.
URL: https://developer.android.com/
guide/topics/connectivity/wifip2p.

[25] WifiManager. URL: https : / / developer .
android.com/reference/android/net/
wifi/WifiManager.

[26] WifiP2pManager. URL: https : / / developer .
android.com/reference/android/net/
wifi/p2p/WifiP2pManager.html.

[27] WifiP2pServiceRequest. URL: https : / /
developer . android . com / reference /
android / net / wifi / p2p / nsd /
WifiP2pServiceRequest.

APPENDIX

AD HOC MONITOR

In an attempt to perform more analysis on the network
itself, we considered using ad hoc monitor software, like
ERLKDev/AdHoc-Monitor [1]. Unfortunately these moni-
tors were incompatible with the Google Nearby Connections
network setup. This is due to the use of Wi-Fi Direct legacy
connection mode: connected devices can not be connected to
any different network in which the monitor resides. The host
node could be monitored using this tool as it is not connected
to a different Wi-Fi access point, but only monitoring a
part of the network seems unhelpful. Especially considering
the host node might disconnect and reconnected as a client.
Creating a monitor for this type of network would provide a
useful follow up project as this would allow better monitoring
of a network like we propose in this paper.

7


